Report a bug
		
				If you spot a problem with this page, click here to create a GitHub issue.
		
			Improve this page
		
			Quickly fork, edit online, and submit a pull request for this page.
			Requires a signed-in GitHub account. This works well for small changes.
			If you'd like to make larger changes you may want to consider using
			a local clone.
		
	mir.model.lda.hoffman
Online variational Bayes for latent Dirichlet allocation
References Hoffman, Matthew D., Blei, David M. and Bach, Francis R.. "Online Learning for Latent Dirichlet Allocation.." Paper presented at the meeting of the NIPS, 2010.
License: 
Authors: 
Ilya Yaroshenko
- structLdaHoffman(F) if (isFloatingPoint!F);
- Batch variational Bayes for LDA with mini-batches.- this(size_tK, size_tW, size_tD, Falpha, Feta, Ftau0, Fkappa, Feps= 1e-05, TaskPooltp= taskPool());
- Parameters:size_t Ktheme count size_t Wdictionary size size_t Dapproximate total number of documents in a collection. F alphaDirichlet document-topic prior (0.1) F etaDirichlet word-topic prior (0.1) F tau0tau0 ≧ 0 slows down the early iterations of the algorithm. F kappakappabelongs to (0.5, 1], controls the rate at which old values of lambda are forgotten. lambda = (1 - rho(tau)) lambda + rho lambda', rho(tau) = (tau0+ tau)^(-kappa). Usekappa= 0 for Batch variational Bayes LDA.F epsStop iterations if ||lambda - lambda'||_l1 < s * eps, where s is a documents count in a batch.TaskPool tptask pool 
- voidupdateBeta();
- @property Slice!(F*, 2)beta();
- Posterior over the topics
- @property Slice!(F*, 2)lambda();
- Parameterized posterior over the topics.
- const @property Ftau();
 @property voidtau(Fv);
- Count of already seen documents. Slows down the iterations of the algorithm.
- size_tputBatch(SliceKind kind, C, I, J)(Slice!(ChopIterator!(J*, Series!(I*, C*)), 1, kind)n, size_tmaxIterations);
- Accepts mini-batch and performs multiple E-step iterations for each document and single M-step.This implementation is optimized for sparse documents, which contain much less unique words than a dictionary.Parameters:Slice!(ChopIterator!(J*, Series!(I*, C*)), 1, kind) nmini-batch, a collection of compressed documents. size_t maxIterationsmaximal number of iterations for s This implementation is optimized for sparse documents, ingle document in a batch for E-step. 
 
Copyright © 2016-2020 by Ilya Yaroshenko | Page generated by
Ddoc on Sun Nov 15 09:37:38 2020